If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-53x-196=0
a = 1; b = -53; c = -196;
Δ = b2-4ac
Δ = -532-4·1·(-196)
Δ = 3593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-\sqrt{3593}}{2*1}=\frac{53-\sqrt{3593}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+\sqrt{3593}}{2*1}=\frac{53+\sqrt{3593}}{2} $
| 2=-r/2+5 | | -5(m-7)-2=3(4m-6) | | (x/2)+(3x/5)=11 | | 6b+6=49 | | 10x+136=8 | | b-(-28)=57 | | -20=2(w-5) | | 8=n-(-11) | | -10q+-13q+7q-19q+4q=14 | | 2g=1=9 | | -5=b/29 | | 7=k/19 | | 476=-28a | | 3x=1.94 | | 6x²+11x-35=0 | | v/6-4=1 | | x^2+5.6x-1.12=0 | | b+16=16 | | 2x=3-x+9 | | 3+9x=9x-3 | | 4=w/4.6 | | 115+5x+5=180 | | 4x+9x-12x=9-5-3 | | 65+5x+5=180 | | X+(1/82)=x+1 | | z^2=z^2 | | 300=51×p | | -2x+11x=18 | | 65+3x+4=180 | | -2x+11x=8 | | 1(x-100)=35.75 | | (8x+2)+(13x+30)=180 |